Hvordan bestemme trådstørrelsen med diameteren

  • Belysning

Bestem hvilken del av ledningen du trenger - dette er bare halvparten av kampen. Vi må også finne den nødvendige delen. Faktum er at noen produsenter produserer kabler med ledninger med mye mindre tverrsnitt enn det som er angitt i de vedlagte dokumentene for å øke fortjenesten. For eksempel erklærte årer på 4 mm 2, og i virkeligheten - 3,6 mm 2 eller enda mindre. Dette er en anstendig forskjell. Hvis du ikke merker det i tide, kan ledningen varmes opp, og dette kan igjen føre til brann. Derfor vil vi fortsette å snakke om hvordan du finner ut trådstørrelsen etter diameter, fordi diameteren alltid kan måles. Videre, basert på måleresultatene, vil vi finne ut de faktiske parametrene til kjernen.

Måter å måle leder diameter

Når du kjøper en elektrisk kabel eller en ledning, er det nødvendig å måle diameteren for å sjekke korsets tverrsnitt. Det er flere måter å gjøre dette på. Måleinstrumenter som en tykkelse eller mikrometer kan brukes. De måler størrelsen på den eksponerte delen av lederen. Enheten er ganske enkelt festet til kjernen, klemmet mellom kjevene, og resultatet vises på skalaen.

Hvordan måle diameteren på kjernen - Ta en tykkelse eller mikrometer

For privat bruk er målingene ganske nøyaktige, med en liten feil. Spesielt hvis enhetene er elektroniske.

For den andre metoden er det bare en linjal og en slags rett stang som trengs. Men i dette tilfellet må du fortsatt gjøre beregningene, veldig enkelt. Om denne metoden - videre.

Linjal + stang

Hvis det ikke er noen måleenheter på gården, kan du gjøre med en vanlig linjal og en hvilken som helst stang av samme diameter. Denne metoden har en høy feil, men hvis du prøver å være nøyaktig nok.

Vi tar et stykke ledning med en lengde på ca 10-20 cm, fjern isolasjonen. Skru av den bare kobber- eller aluminiumtråd på stangen av samme diameter (noen skrutrekker, blyant, penn, etc.) vil gjøre. Spolene legges pent, tett til hverandre. Antall sving er 5-10-15. Vi teller antall komplette svinger, ta en linjal og måle avstanden som spoletråden opptar på stangen. Del deretter denne avstanden med antall svinger. Som et resultat får vi lederens diameter.

Hvordan måle diameteren på ledningen uten enheter

For eksempel sår de 10 svinger (det er enklere å telle), de tok 3,8 cm (eller 38 mm) på stangen. Derefter deles avstanden med antall svinger, 38/10 = 3,8 mm, vi får at diameteren av sårtråden er 3,8 mm.

Som du kan se, er det en feil her. Først kan du legge ledningen løst. For det andre er det ikke nok å ta målinger. Men hvis du gjør alt forsiktig, vil uoverensstemmelsene med den faktiske størrelsen ikke være så stor.

Slik måler du diameteren av strandetråd

Hvis du trenger å vite diameteren på den trådstrengede ledningen, utføres målinger med en av ledningene, dets komponenter. Prosessen er den samme: Fjern isoleringen, fjern skjeden (hvis det er noe), fluff ledningene, velg en, ta målinger på noen måte (ved hjelp av en mikrometer eller vikling på stangen).

Hvordan bestemme trådstørrelsen etter diameter hvis den levde mye?

Den funnet størrelsen multipliseres med antall ledninger i en leder (fluff og telling). Det er alt, diameteren til den strengede lederen du fant. Det gjenstår å lære å finne ut trådstørrelsen etter diameter, fordi det er ledningsområdet som brukes når du planlegger ledningen.

Hvordan beregnes med formelen

Siden tverrsnittet av ledningen er en sirkel, vil vi bruke formelen for området av en sirkel (på bildet). Som du kan se, kan du beregne tverrsnittet av ledningen ved hjelp av den målte diameteren eller beregne radiusen (divisjonsdiameteren med 2). For klarhet gir vi et eksempel. La den målte trådstørrelsen være 3,8 mm. Vi erstatter denne figuren i formelen, og vi får: 3,14 / 4 * 3,8 2 = 11,3354 mm 2. Du kan runde resultatet - det blir 11,3 mm 2. Fantastisk kabel.

Formelen av kabeldiameterdiameteren

Den andre delen av formelen bruker radiusen. Det er halv diameter. Det vil si å finne radiusen, diameteren er delt med 2, vi får 3,8 / 2 = 1,9 mm 2. Deretter erstatter vi inn i formelen, og vi får: 3.14 * 1.9 2 = 11.3354 mm 2.

Tallene er de samme som det burde være. Så, med en tråddiameter på 3,8 mm, er dens tverrsnittsareal 11,34 mm 2. Du vet hvordan du finner ut tverrsnittet av ledningen med formelen. Men det er ikke alltid mulig å gjøre beregningene. I dette tilfellet kan bordene hjelpe.

Bestemmelse av trådtverrsnitt etter diameter i henhold til tabeller

For kablings- og ledningsprodukter er det et bestemt sett av seksjoner som er stavet ut i forskrifter. Å vite hvilken del du trenger, ifølge tabellen, finner vi diameteren til lederen. Da trenger du bare å finne produkter med de nødvendige parametrene.

Nå litt om hvordan du skal jobbe med dette bordet. Du går for produkter med bestemte parametere. For eksempel vet du at du trenger en kabel med et tverrsnitt på 4 mm 2. Finne riktig verdi i tabellen, vi ser etter de nødvendige parametrene i kabelproduktene. I dette tilfellet vil det være nødvendig å finne ledninger med en diameter på 2,26 mm. Hvis i butikken eller på markedet finner vi nære parametre, er dette allerede bra. Det skjer at parametrene angitt på taggen er overvurdert, dvs. den faktiske lederens tverrsnitt er mindre.

Det er to måter å finne det du trenger. Den første er å se etter produkter som oppfyller de angitte parametrene. Kanskje, etter å ha brukt litt tid, vil du klare å finne. Men tiden til å søke vil ta mye. Det er for få ansvarlige produsenter. Det er forresten et tegn som du kan navigere på. Dette er prisen. Det er godt over gjennomsnittet. Dette skyldes at mer kobber eller aluminium har blitt brukt. Hvis du bruker dette tegnet, vil tiden være mindre.

Det andre alternativet er å se produkter med stor nominell verdi. I vårt tilfelle, tenk slik: Vi trenger en ledning med 4 firkanter. Den neste er 6 mm 2. Det er meget sannsynlig at parametrene til denne kabelen i ekte vil være nær de nødvendige 4 rutene. Kanskje tverrsnittet av lederne vil være mer, men det er bra - ledningene vil ikke akkurat varme opp. Ulempen med dette alternativet er at du bruker mer penger, siden slike kabler koster mer.

Generelt vet du ikke bare hvordan du finner ut trådstørrelsen etter diameter, men også hvordan du velger den riktige. Selv om de deklarerte egenskapene ikke faller sammen med de virkelige.

Et eksempel på beregningen av kabelseksjonen.

Kabelprodukter er nå på markedet i et bredt spekter, tverrsnittet av kjernene varierer fra 0,35 mm.kv. og over, vil denne artikkelen gi et eksempel på beregningen av kabeltverrsnittet.

For å beregne motstanden til lederen, kan du bruke kalkulatoren til å beregne motstanden til lederen.

Feil valg av kabelseksjon for husholdningsnettverk kan føre til følgende resultater:

1. En løpende meter med en altfor tykk kjerne vil koste mer, noe som vil føre til et betydelig "slag" til budsjettet.

2. Kjernene vil snart begynne å varme opp og smelte isolasjonen dersom feil diameter diameter er valgt (mindre enn nødvendig), og dette kan snart føre til kortslutning eller selvantennelse av de elektriske ledninger.

For ikke å kaste bort penger, er det nødvendig før du starter installasjonen av elektriske ledninger i en flate eller et hus for å utføre riktig beregning av kabeltverrsnittet, avhengig av gjeldende styrke, kraft og lengde.

Beregning av kabeltverrsnitt på kraften til elektriske apparater.

Hver kabel har en nominell effekt som den kan tåle når man bruker elektriske apparater. Når strømmen til alle elektriske apparater i leiligheten vil overstige den beregnede indikatoren for lederen, vil ulykken ikke unngås på kort tid.

Det er mulig å beregne strømmen til elektriske apparater i en leilighet eller et hus. For å gjøre dette må du skrive ned egenskapene til hver enhet på et ark papir (TV, støvsuger, komfyr, lamper). Da summeres alle oppnådde verdier, og det ferdige tallet brukes til å velge den optimale diameteren.

Formelen for beregning av effekt er som følger:

Ptotal = (P1 + P2 + P3 +... + Pn) * 0,8, hvor: P1..Pn er kraften til hvert apparat, kW

Det er verdt å legge merke til at tallet som viste seg, må multipliseres med en korreksjonsfaktor - 0,8. Dette forholdet betyr at kun 80% av alle elektriske apparater vil fungere samtidig. En slik beregning ville være mer logisk, fordi en støvsuger eller hårføner, definitivt ikke vil bli brukt i lang tid uten avbrudd.

Et eksempel på beregning av kabeltverrsnittet for effekt er vist i tabellene:

For leder med aluminium ledere.

For en leder med kobberledere.

Som det fremgår av tabellene, har dataene dine verdier for hver bestemt type kabel, du trenger bare å finne nærmest strømverdiene og se det tilsvarende tverrsnittet av ledningene.

For eksempel er beregningen av kabeltverrsnittet for effekt som følger

Anta at i en leilighet er den totale effekten av alle apparater 13 kW. Det er nødvendig å multiplisere den resulterende verdien med en faktor på 0,8, som et resultat vil dette gi 10,4 kW av den faktiske belastningen. Deretter må den aktuelle verdien finnes i tabellens kolonne. Det nærmeste sifferet er 10,1 for enfaset nettverk (220V spenning) og for en trefaset nettverkstall er 10.5. Så vi stopper valg av tverrsnitt med et enkeltfaset nettverk på en 6-millimeter leder eller med en trefase på en 1,5 millimeter.

Beregning av kabeltverrsnitt for gjeldende last.

En mer nøyaktig beregning av kabel-tverrsnittet for strøm, så det er best å bruke det. Essensen av beregningen er lik, men i dette tilfellet er det bare nødvendig å bestemme hva den nåværende belastningen vil være på den elektriske ledningen. Først må du beregne den aktuelle intensiteten for hver av de elektriske apparatene ved hjelp av formlene.

Gjennomsnittlig effekt av husholdningsapparater

Et eksempel på å vise strømmen til apparatet (i dette tilfellet LCD-TV)

For beregningen er det nødvendig å bruke følgende formel, hvis leiligheten har et enfaset nettverk:

I = P / (U × cosφ)

Når nettverket er trefaset, ser formelen slik ut:

I = P / (1,73 × U × cosφ), hvor P er elektrisk kraft av lasten, W;

  • U er den faktiske nettspenningen, V;
  • cosφ er effektfaktoren.

Da er alle strømmer oppsummert, og det er nødvendig å velge kabeltverrsnittet med strøm i henhold til tabellverdiene.

Det skal bemerkes at verdiene av tabellverdiene vil avhenge av betingelsene for lederinstallasjon. Strøm og strøm belastninger vil bli betydelig større når du installerer åpne elektriske ledninger enn hvis ledningen er i et rør.

Den resulterende totale verdien av strømmer for aksjen anbefales å multiplisere med 1,5 ganger, fordi over tid kan kraftigere elektriske apparater kjøpes i leiligheten.

Beregning av kabeltverrsnitt langs lengden.

Du kan også beregne lengden på kabelseksjonen. Essensen av slike beregninger er at hver av lederne har sin egen motstand, noe som bidrar til nåværende tap med økende linjelengde. Det er nødvendig å velge en leder med større ledere hvis størrelsen på tapet overstiger 5%.

Beregningene er som følger:

  • Beregner total effekt av alle elektriske enheter og strømstyrke.
  • Da beregnes ledningens motstand ved hjelp av formelen: resistiviteten til lederen (p) * lengden (i meter).
  • Det er nødvendig å dele den resulterende verdien med det valgte kabletversnittet:

R = (p * L) / S, hvor p er en tabellverdi

Du bør være oppmerksom på at gjeldende passasjelengde skal multipliseres med 2 ganger, siden i utgangspunktet går strømmen gjennom en kjerne og går tilbake gjennom den andre.

  • Tapet av spenning beregnes: gjeldende multiplikeres med den beregnede motstanden.
  • Deretter bestemmes størrelsen på tapet: spenningsfallet er delt av spenningen i nettverket og multiplisert med 100%.
  • Totalt antall er analysert. Hvis verdien som er oppnådd er mindre enn 5%, kan den valgte tverrsnittet av kjernen være igjen, men hvis den er større, må lederen bli valgt til å være "tykkere".

Resistivitetstabell.

Det er nødvendig å ta en beregning med tanke på tap langs lengden, hvis linjen trekkes over en ganske lang avstand, ellers er det stor sandsynlighet for å velge kabeleksjonen feil.

Hvordan finner jeg kabel-tverrsnittet med kjerne diameter

Hver av oss har en gang i livet gjennom reparasjoner. Ved reparasjon må du gjøre installasjon og bytte av elektrisk ledning, fordi det blir ubrukelig ved langvarig bruk. Dessverre, i markedet i dag finner du mye dårlig kvalitet kabel og ledningsprodukter. På grunn av de ulike måtene å redusere kostnadene for varene, lider kvaliteten. Produsenter undervurderer tykkelsen på isolasjons- og kabelseksjonen i produksjonsprosessen.

En av måtene å redusere kostnadene er å bruke materialer av lav kvalitet til den ledende kjerne. Noen produsenter legger til billige urenheter i produksjonen av ledninger. På grunn av dette reduseres ledningsevnen til ledningen, og derfor går produktkvaliteten mye å være ønsket.

I tillegg reduseres de oppgitte egenskapene til ledningene (kabler) på grunn av den lave delen. Alle triksene fra produsenten fører til at salg av flere og flere produkter av dårlig kvalitet. Derfor er det nødvendig å gi preferanse til kabelprodukter som har kvalitetsbekreftelse i form av sertifikater.

Prisen på en kabel av høy kvalitet er den eneste, og kanskje den største ulempen som krysser ut fordelene ved dette produktet. Kobberledningslederproduktet, som er produsert i henhold til GOST, har den deklarerte lederens tverrsnitt, sammensetningen og tykkelsen på skallet og kobberlederen som kreves av GOST, produsert i samsvar med alle teknologiene, vil koste mer enn produktene som er produsert under kunstige forhold. Som regel, i sistnevnte versjon, kan du finne mange feil: en lav del av 1,3-1,5 ganger, noe som gir venene en farge på grunn av stål med tilsetning av kobber.

Kjøpere stole på pris når du velger et produkt. Søket etter lave priser fokuserer. Og mange av oss kan ikke engang nevne produsenten, for ikke å snakke om kvaliteten på kabelen. Det er viktigere for oss at vi har funnet en kabel med nødvendig merking, for eksempel VVGp3h1,5, og vi er ikke interessert i kvaliteten på produktet.

Derfor, for ikke å falle i ekteskap, vil vi i denne artikkelen vurdere flere måter å bestemme kabeltverrsnittet ved kjernens diameter. I dagens håndbok vil jeg vise hvordan slike beregninger kan gjøres ved hjelp av høyspesifikke måleverktøy, og uten dem.

Vi utfører beregningen av tverrsnittet av tråddiameteren

I løpet av det siste tiåret har kvaliteten på produserte kabelprodukter blitt redusert spesielt merkbart. Den mest berørte motstanden - ledningsdelen. På forumet har jeg ofte lagt merke til at folk er misfornøyde med slike endringer. Og det vil fortsette inntil produsentens defiant tyveri begynner å reagere.

Et lignende tilfelle skjedde med meg. Jeg kjøpte to meter ledninger av VVGng 3x2.5 kvadratmeter. millimeter. Det første som fikk øye på meg, var en veldig tynn diameter. Jeg trodde at jeg sannsynligvis slengte en ledning av en mindre del. Jeg ble enda mer overrasket da jeg så påskriften på isolasjon VVGng 3x2.5 kvm.

En erfaren elektriker, som møter ledninger hver dag, kan enkelt bestemme tverrsnittet av en kabel eller en wire for øyet. Men noen ganger en profesjonell gjør det med vanskeligheter, for ikke å nevne nybegynnere. For å gjøre beregningen av trådtverrsnittet for diameteren er en viktig oppgave som må løses rett i butikken. Tro meg, denne minimumskontrollen vil bli billigere og enklere enn å reparere brannskader som kan oppstå på grunn av kortslutning.

Du spør sannsynligvis hvorfor det er nødvendig å utføre beregningen av kabelseksjonen etter diameter? Tross alt, i butikken, vil noen selger fortelle deg hvilken ledning du skal kjøpe for lasten din, spesielt på ledningene finnes det påskrifter som angir antall ledninger og tverrsnittet. Hva er det en kompleks beregnet belastning, kjøpt en ledning, gjort ledninger. Men ikke alt er så enkelt.

For aldri å bli utsatt for svindel, anbefaler jeg sterkt at du lærer å bestemme tverrsnittet av ledningen på egen diameter.

Lav trådmåler - hva er faren?

Så vær oppmerksom på farene som venter oss når du bruker ledninger av lav kvalitet i hverdagen. Det er klart at dagens egenskaper av nåværende bærende vener reduseres i direkte forhold til reduksjonen av deres tverrsnitt. Belastningens belastningskapasitet på grunn av den lave delen faller. I henhold til standardene beregnes en strøm som en ledning kan passere gjennom. Det vil ikke kollapse hvis mindre strøm går gjennom det.

Motstand mellom ledere reduseres dersom isolasjonslaget er tynnere enn nødvendig. Deretter, i en nødsituasjon, hvis forsyningsspenningen i isolasjonen øker, kan det oppstå en sammenbrudd. Hvis selve kjernen, sammen med dette, har et undervurdert tverrsnitt, det vil si at det ikke kan passere strømmen at det skulle passere standarder, begynner den tynne isolasjonen gradvis å smelte. Alle disse faktorene vil uunngåelig føre til kortslutning og deretter til brann. Brannen stammer fra gnister som oppstår i øyeblikket av kortslutning.

Jeg vil gi et eksempel: en tre-kjerne kobbertråd (for eksempel et tverrsnitt på 2,5 kvm.) Ifølge regulatorisk dokumentasjon kan den kontinuerlig passere 27A gjennom seg selv, vanligvis 25A.

Men ledningene som kom ut i mine hender, utstedt i henhold til TU, har faktisk et tverrsnitt på 1,8 kvadratmeter. mm. opptil 2 kvadratmeter. mm. (dette er på oppgitt 2,5 kvm.). Basert på reguleringsdokumentasjonens ledningsdel på 2 kvadratmeter. mm. kan kontinuerlig passere nåværende 19A.

Derfor skjedde det en slik situasjon at ledningen du valgte, som angivelig har et tverrsnitt på 2,5 kvadratmeter. mm., vil strømmen beregnet for et slikt tverrsnitt strømme, ledningen vil overopphetes. Og med langvarig eksponering vil isolasjonen smelte, så en kortslutning. Kontaktforbindelser (for eksempel i stikkontakten) kolliderer raskt hvis slike overbelastninger oppstår regelmessig. Derfor kan stikkontakten selv, så vel som stikkontaktene til husholdningsapparater, også gjennomgå reflow.

Forestill deg nå konsekvensene av alt dette! Det er spesielt støtende når en vakker reparasjon er gjort, en ny apparat er installert, for eksempel air condition, en elektrisk ovn, komfyr, vaskemaskin, vannkoker, mikrobølgeovn. Og så legger du de bakt boller i ovnen, startet vaskemaskinen, slår på kjelen, og også klimaanlegget, da det ble varmt. Det er nok disse inkluderte enhetene som røyken fra distribusjonskasser og stikkontakter gikk.

Så hører du klaffen, som er ledsaget av et blits. Og etter det vil strømmen være borte. Det vil fortsatt ende bra hvis du har sikkerhetsbrytere. Og hvis de er av dårlig kvalitet? Deretter klapper og blinker du ikke kommer av. Brannen begynner, som følger med gnister fra ledningen som brenner i veggen. Kabling vil i alle fall brenne, selv om den er tett tett under flisen.

Bildet jeg beskrev gjør det klart hvor ansvarlig du trenger å velge ledningene. Tross alt vil du bruke dem i ditt hjem. Det er det som betyr å følge ikke GOST, men TU.

Formelen av tverrsnittet av tråddiameteren

Så, jeg vil gjerne oppsummere alt ovenfor. Hvis blant dere er det de som ikke har lest artikkelen før dette avsnittet, men bare hoppet over, gjentar jeg. Kabel- og ledningsprodukter mangler ofte informasjon om de standarder som det ble produsert i. Spør selgeren, i henhold til GOST eller TU. Selgere kan noen ganger ikke svare på dette spørsmålet.

Vi kan trygt si at i 99,9% av tilfellene har ledninger laget i henhold til spesifikasjonene ikke bare et undervurdert tverrsnitt av strømførende ledere (med 10-30%), men også en lavere tillatt strøm. Også i slike produkter finner du en tynn ytre og indre isolasjon.

Hvis du gikk rundt alle butikkene, men du fant ingen ledninger utstedt i henhold til GOST, ta deretter ledningen med et reserve på +1 (hvis det er produsert i henhold til spesifikasjonene). For eksempel trenger du en ledning på 1,5 kvadratmeter. mm., så skal du ta 2,5 kvadratmeter. mm. (utgitt da TU). I praksis vil dens tverrsnitt være lik 1,7-2,1 kvadratmeter. mm.

På grunn av marginen i delen vil det bli gitt en nåværende margin, det vil si at belastningen kan være litt overskredet. Så mye bedre for deg. Hvis du trenger en ledningstverrsnitt på 2,5 kvadratmeter. mm., deretter ta en del av 4 kvadrat. mm., siden den virkelige delen vil være lik 3 kvm.

Så tilbake til vårt spørsmål. Lederen har et tverrsnitt i form av en sirkel. Sikkert, du husker at i geometri beregnes området av en sirkel ved hjelp av en bestemt formel. I denne formelen er det nok å erstatte den oppnådde verdien av diameteren. Etter å ha gjort alle beregningene, får du et tverrsnitt av ledningen.

  • π er en konstant i matematikk lik 3,14;
  • R er radius av sirkelen;
  • D er diameteren til sirkelen.

Dette er formelen for å beregne tverrsnittet av en ledning av diameteren, som mange frykter av en eller annen grunn. For eksempel målt du kjernens diameter og oppnådde en verdi på 1,8 mm. Ved å erstatte dette tallet i formelen får vi følgende uttrykk: (3,14 / 4) * (1,8) 2 = 2,54 kvadratmeter. mm. Så ledningen, diameteren til lederen du har målt, har et tverrsnitt på 2,5 kvm.

Beregning av en monolitisk kjerne

Når du går til butikken for en ledning, ta en mikrometer eller en vernierklipper med deg. Sistnevnte er mer vanlig som måleapparat for trådtverrsnitt.

Jeg vil si straks beregningen av kabletversnittet for diameteren i denne artikkelen vil jeg utføre for kabelen VVGng 3 * 2,5 mm2 av tre forskjellige produsenter. Det vil si at essensen av hele arbeidet blir delt inn i tre faser (dette gjelder bare for en monolitisk ledning). La oss se hva som skjer.

For å finne ut av tverrsnittet av en ledning (kabel) bestående av en enkelt ledning (monolitisk kjerne), er det nødvendig å ta en konvensjonell tykkelse eller mikrometer og måle diameteren av ledningskjernen (uten isolasjon).

For å gjøre dette må du pre-rengjøre en liten del av den målte ledningen fra isolasjon, og deretter begynne å måle den nåværende bærende kjernen. Med andre ord tar vi en kjerne og fjerner isolasjonen, og måler diameteren på denne kjernen med en tykkelse.

Eksempel nummer 1. Kabel VVG-PNG 3 * 2,5 mm2 (produsent ukjent). Det generelle inntrykket - seksjonen virket ikke nok med en gang, så jeg tok det for opplevelsen.

Vi fjerner isolasjon, vi måler en tykkelse. Jeg har diameteren på kjernen er 1,5 mm. (ikke nok men).

Nå kommer vi tilbake til vår ovenfor beskrevne formel og erstatter de mottatte dataene inn i den.

Det viser seg at den faktiske delen er 1,76 mm2 i stedet for den angitte 2,5 mm2.

Eksempel nummer 2. Kabel VVG-PNG 3 * 2,5 mm2 (produsent "Azovkabel"). Det generelle inntrykket er at tverrsnittet synes å være normalt, isolasjonen er også god, det ser ikke ut til å spare på materialer.

Vi gjør alt på samme måte, fjern isoleringen, måle, vi får følgende figurer: diameter - 1,7 mm.

Erstatter i vår formel for beregning av tverrsnittet på diameteren får vi:

Den faktiske tverrsnitt er 2,26 mm2.

Eksempel nummer 3. Så det siste eksemplet var igjen: kabel VVG-PNG 3 * 2,5 mm2 produsent ukjent. Det generelle inntrykket er at seksjonen også syntes å være undervurdert, isolasjon er vanligvis fjernet med bare hender (ingen styrke overhodet).

Denne gangen var kjernens diameter 1,6 mm.

Den faktiske tverrsnitt er 2,00 mm2.

Jeg vil også legge til i dagens håndbok hvordan du bestemmer tverrsnittet av ledningen etter diameter ved hjelp av kalibrer et annet eksempel, kabel VVG 2 * 1.5 (bare et stykke lå). Jeg ville bare sammenligne, delene av 1.5-formatet er også undervurdert.

Vi gjør det samme: fjern isoleringen, ta tykkelsen. Det viste seg at diameteren av kjernen er 1,2 mm.

Den faktiske tverrsnitt er 1,13 mm2 (i stedet for den angitte 1,5 mm2).

Beregning uten tykkelse

Denne beregningsmåten brukes til å finne tverrsnittet av en ledning med en leder. I dette tilfellet brukes måleinstrumenter ikke. Utvilsomt er bruken av en tykkelse eller mikrometer for disse formål ansett som den mest optimale. Men disse verktøyene er ikke alltid tilgjengelige.

Finn i dette tilfellet et sylindrisk objekt. For eksempel, den vanlige skrutrekker. Vi tar noen vene i kabelen, lengden er vilkårlig. Vi fjerner isolasjonen slik at venen er helt ren. Vi vind den kjerne av ledningen på en skrutrekker eller en blyant. Målet blir jo mer nøyaktig, jo mer blir du til.

Alle spoler skal plasseres så tett som mulig, slik at det ikke er hull. Beregn hvor mange svinger som skjedde. Jeg regnet 16 svinger. Nå må du måle lengden på viklingen. Jeg fikk 25 mm. Del lengden på viklingen på antall svinger.

  1. L er viklingslengden, mm;
  2. N er antall fulle svinger;
  3. D-diameter av kjernen.

Verdien som er oppnådd er ledningens diameter. For å finne tverrsnittet bruker vi den ovenfor beskrevne formelen. D = 25/16 = 1,56 mm2. S = (3,14 / 4) * (1,56) 2 = 1,91 mm2. Det viser seg når man måler med en tykkelse, er tverrsnittet 1,76 mm2, og når man måler med en linjal 1,91 mm2 - vel, er feilen en feil.

Hvordan bestemme tverrsnittet av strandetråd

Beregningsgrunnlaget er det samme prinsippet. Men hvis du måler diameteren på alle ledningene som utgjør kjernen på en gang, vil du beregne tverrsnittet feil, fordi det er et luftgap mellom ledningene.

Derfor må du først fløse ledningens kjerne (kabel) og telle antall ledninger. Nå, i henhold til fremgangsmåten beskrevet ovenfor, er det nødvendig å måle diameteren på en ven.

For eksempel har vi en wire bestående av 27 årer. Å vite at diameteren på en vene er 0,2 mm, kan vi bestemme tverrsnittet av denne venen ved å bruke det samme uttrykket for å beregne et sirkelområde. Den resulterende verdien må multipliseres med antall vener i strålen. Så du kan finne ut tverrsnittet av hele strengen.

Som en multicore PVA wire 3 * 1.5. I en ledning 27 separate årer. Ta en tykkelse måle diameteren, jeg har diameteren er 0,2 mm.

Nå må du bestemme tverrsnittet av denne venen, for dette bruker vi strammere formel. S1 = (3,14 / 4) * (0,2) 2 = 0,0314 mm2 er tverrsnittet i en blodåre. Multipliser dette nummeret med antall ledninger i ledningen: S = 0.0314 * 27 = 0.85 mm2.

Bestemmelse av trådtverrsnitt - en gjennomgang av effektive metoder

Det viktige poenget er at selv om du utfører alle beregningene riktig og velger et passende produkt, kan det oppstå en plage som en ulykke. Dette skyldes at ikke alltid tverrsnittet av ledningene, som er indikert på merking av ledninger, tilsvarer de faktiske verdier. Dette er bare feilen fra produsenten, for det er ikke sikkert at karakteristikkene sammenfaller på grunn av økonomiske "triks" i selskapet. Noen ganger er ledningene og kablene på hyllene generelt umarkede, som også stiller spørsmål om kvaliteten.

Du spør: "Hvorfor skulle et selskap ødelegge sitt rykte?", Som du umiddelbart kan finne flere logiske svar på:

  1. Anlegget bestemte seg for å spare på kvaliteten på varene. For eksempel, hvis du lager en 2,5 millimeter kjerne tynner med 0,2 mm. Kvadrat. Du kan vinne et par kilo metall med 1 kjøring kilometer. Med masseproduksjon har besparelsene anstendig tall.
  2. I kampen for "et sted i solen" prøver bedrifter for produksjon av elektriske ledninger å lokke forbrukeren til seg selv, noe som gjør prisen lavere enn konkurrentene. Følgelig er den lave prisen satt på grunn av en liten reduksjon i diameter (ikke merkbar ved øyet).

Som du ser, er begge svarene ganske rimelige, så det er bedre å advare deg selv og gjøre noen enkle beregninger, som vi vil diskutere senere.

Metoder for å bestemme

Det er flere måter å bestemme kabeltverrsnittet på. Alle koker ned til å først beregne diameteren til kjernen, og deretter bruke små beregninger for å finne ut den endelige verdien.

Metode nummer 1 - Enheter for å hjelpe!

Til dags dato er det tekniske enheter som du enkelt kan bestemme diameteren til ledertråden eller kabelen. Disse enhetene inkluderer kalipre og mikrometre (zoom inn på bilder for å vise alle verktøyene).

Denne metoden for å bestemme den mest nøyaktige, men "baksiden av mynten" er kostnaden for selve tykkelsen / mikrometeren. Prisen er selvfølgelig ikke kosmisk, men for engangsbruk er det ingen mening å kjøpe dette verktøyet.

Ofte er dette alternativet valgt av profesjonelle elektrikere, hvis liv er direkte forbundet med installasjon av elektriske ledninger. Med en tykkelse kan du mest nøyaktig bestemme tverrsnittet av ledningen på egenhånd. Fordelen med denne teknikken er at det er mulig å måle diameteren av kjernene selv på en del av en arbeidslinje (for eksempel i en sokkel).

Etter måling må du bruke følgende formel:

Ikke glem at tallet "Pi" er 3,14. For å forenkle formelen så mye som mulig, er det mulig å dele 3,14 ved 4, hvoretter beregningene vil bli redusert til en multiplikasjon på 0,785 av diameteren på torget!

Metode nummer 2 - Bruk linjalen

Hvis du ikke vil bruke penger (og du gjør det riktig!), Anbefaler vi at du bruker en enkel "gammeldags" metode for å bestemme tverrsnittet av en ledning med diameteren. Hvis det er en ledning, en enkel blyant og en linjal, kan du finne svaret på få minutter. Alt du trenger er å kjerne kjernen fra isolasjonen, skru den deretter fast på blyanten (som vist på bildet) og måler den totale lengden på viklingen med en linjal.

Essensen av metoden ligger i det faktum at det er nødvendig å måle totallengden til sårlederen og dele den med antall kjerner. Verdien som er oppnådd er den diameteren du må bestemme.

Til tross for sin enkelhet har beregninger sine egne egenskaper:

  • jo flere blodårer blir såret på blyant, jo mer nøyaktig blir resultatet, det minste antall svinger er 15;
  • spoler må være tett presset til hverandre slik at det ikke er ledig plass, noe som vil øke feilen betydelig;
  • Bestemmelsen må utføres flere ganger (endre måleinnretningens første side, dreie linjalen over, etc.). Igjen, jo flere beregninger, jo mindre feil.

Vi trekker oppmerksomheten til de betydelige ulempene ved denne metoden. Først av alt er bare tynne ledere egnet for måling (på grunn av at det blir vanskelig å vri den tykke kabelen). For det andre, i butikken før du kjøper for denne teknikken, må du separat kjøpe et lite stykke av produktet.

Etter alle målinger er det nødvendig å bruke samme formel som vi angitt ovenfor. Videoen viser et eksempel på å definere et ledertverrsnitt ved hjelp av en linjal:

Metode nummer 3 - Bruke tabeller

I stedet for å bestemme kabeltverrsnittet ved hjelp av formelen, kan du enkelt bruke ferdige bord, noe som vil redusere tiden og gjøre resultatet mer nøyaktig.

Bordet er ganske enkelt: i en kolonne er kjernens diametre indikert, i den andre - deres tverrsnitt i firkanter.

Elektriker tips

Vi har gitt eksisterende metoder, men det er ikke alt.

Vi anbefaler at du gjør deg kjent med følgende tips fra erfarne elektrikere på definisjonen av trådstørrelse:

  1. I tillegg til tverrsnittet av produktet, vær oppmerksom på metallet i kjernen. Kobber- eller aluminiumkjerne bør ha en karakteristisk rik farge. Hvis fargen er tvilsom, så er det sannsynligvis en legering av metaller som gjør at produsenten kan spare penger. En slik legering er ekstremt farlig for installasjon av elektriske ledninger i huset, fordi dets konduktivitet og nominell belastning er flere ganger mindre enn for det opprinnelige produktet.
  2. Seksjonen skal bare bestemmes av venen. Selv om produktet har normal tykkelse, er det mulig at de reduserte dimensjonene av kjernen ble kompensert av et økt isolasjonslag.
  3. Hvis du tviler på størrelsen på dirigenten, kjøp en større ledning. Strømreserven ødelegger ikke ledningen!
  4. Hvis du har en kabel, vil beregningen bli litt forandret (på grunn av at kabelen kan bestå av n-nummeret av ledninger). For å kunne utføre beregninger på riktig måte, må du først bestemme diameteren til hver enkelt ledning, oppsummer deretter alle verdiene og velg produkter i henhold til totalt antall.

Video instruksjon

Vi fant en veldig interessant videoinstruksjon, som ikke bare viser hvordan man skal bestemme ledningstverrsnittet, men også et illustrativt eksempel på den ulike kvaliteten på produktene fra flere produsenter. Hvis du vet det ukrainske språket, vil videoen være nyttig for deg og vil kunne svare på eventuelle spørsmål, hvis noen!

Vi håper at nå vet du hvordan du skal bestemme tverrsnittet av en ledning med diameteren. Hvis du har noen spørsmål, spør dem umiddelbart til våre eksperter i kommentarene eller kategorien "Spørsmål til elektrikeren"!

Tabell: tråddiameter - ledningsdel

Ofte må man, før man kjøper kabelprodukter, selvstendig måle sin tverrsnitt for å unngå svindel fra produsentens side, som på grunn av besparelser og konkurransedyktige priser kan undervurdere denne parameteren litt.

Videre vet du hvordan du skal bestemme kabelens tverrsnitt, det er nødvendig, for eksempel når du legger til et nytt strømforbruket punkt i rom med gamle elektriske ledninger, som ikke har noen teknisk informasjon. Følgelig er spørsmålet om hvordan man finner ut lederens tverrsnitt alltid relevant.

Generell kabel og ledningsinformasjon

Når du arbeider med ledere, er det nødvendig å forstå deres betegnelse. Det er ledninger og kabler som avviger fra hverandre i den indre strukturen og tekniske egenskaper. Men mange mennesker forveksler ofte disse konseptene.

En ledning er en leder, som i sin konstruksjon har en ledning eller en gruppe ledninger sammenvevd, og et tynt, totalt isolerende lag. En kabel kalles en kjerne eller en gruppe kjerner som har både egen isolasjon og et felles isolerende lag (skjede).

Hver av lederne vil svare til deres metoder for å bestemme deler, som er nesten like.

Ledermaterialer

Mengden energi som lederen overfører avhenger av en rekke faktorer, hvor hoveddelen er materialet til ledende ledninger. Materialet av trådene og kablene kan være følgende ikke-jernholdige metaller:

  1. Aluminium. Billige og lette guider, som er deres fordel. De har slike negative egenskaper som lav elektrisk ledningsevne, tendens til mekanisk skade, høy forbigående elektrisk motstand av oksiderte overflater;
  2. Kobber. De mest populære lederne har, i sammenligning med andre alternativer, høy pris. Imidlertid er de preget av lav elektrisk og forbigående motstand ved kontaktene, høy elastisitet og styrke, lette lodding og sveising;
  3. Alyumomed. Kabelprodukter med aluminium ledere som er belagt med kobber. De er preget av en litt lavere elektrisk ledningsevne enn kobberanalogene. De er også preget av lyshet, middels motstand med relativ billighet.

Det er viktig! Noen metoder for å bestemme tverrsnittet av kabler og ledninger vil avhenge nøyaktig på materialet til kjernekomponenten, noe som direkte påvirker gjennomstrømningseffekten og strømstyrken (metoden for å bestemme tverrsnittet av kjernene når det gjelder strøm og strøm).

Måling av lederens tverrsnitt etter diameter

Det er flere måter å bestemme tvers av en kabel eller ledning. Forskjellen i å bestemme tverrsnittsarealet for ledninger og kabler vil være at i kabelprodukter er det nødvendig å måle hver kjerne separat og oppsummere indikatorene.

For informasjon. Måling av den vurderte parameter med instrumentering, er det nødvendig å først måle diametrene til de ledende elementer, fortrinnsvis fjerne isolasjonslaget.

Instrumenter og måleprosess

Instrumenter for måling kan være en tykkelse eller mikrometer. Vanligvis brukes mekaniske enheter, men elektroniske analoger med en digital skjerm kan også brukes.

I utgangspunktet måles trådens og kablernes diameter med en tykkelse, som den er funnet i nesten alle husholdninger. De kan også måle diameteren på ledningene i et arbeidsnett, for eksempel en stikkontakt eller sentralbord.

Definisjonen av trådtverrsnittet etter diameter er laget i henhold til følgende formel:

S = (3,14 / 4) * D2, hvor D er diameteren av ledningen.

Hvis kabelen inneholder mer enn én kjerne, er det nødvendig å måle diameteren og beregne tverrsnittet ved hjelp av formelen ovenfor for hver av dem, og slå sammen resultatet ved hjelp av formelen:

Stot = S1 + S2 +... + Sn, hvor:

  • S totalt er det totale tverrsnittsarealet;
  • S1, S2,..., Sn - tverrsnitt av hver kjerne.

Merk. For nøyaktighet av det oppnådde resultatet, anbefales det å måle minst tre ganger, og dreie lederen i forskjellige retninger. Resultatet vil være et gjennomsnitt.

I fravær av en tykkelse eller mikrometer kan lederdiameteren bestemmes ved bruk av en standardlinje. For å gjøre dette må du utføre følgende manipulasjoner:

  1. Rengjør isolasjonslaget av kjernen;
  2. Skru viklingene tett rundt hver blyant (minst 15-17 stykker);
  3. Mål viklingslengden;
  4. Del verdien med antall svinger.

Det er viktig! Hvis spolene ikke settes på blyanten jevnt med hull, vil det være i tvil om nøyaktigheten av resultatene av måling av kabel-tverrsnittet med diameter. For å forbedre nøyaktigheten av målingene anbefales det å lage målinger fra forskjellige sider. Det vil være vanskelig å vri tykke ledere på en enkel blyant, så det er bedre å ty til vernier calipers.

Etter måling av diameteren beregnes trådens tverrsnittsareal med formelen ovenfor eller bestemmes av et spesialtabell hvor hver diameter tilsvarer verdien av tverrsnittsarealet.

Diameteren av ledningen, som i sin sammensetning inneholder ultralette ledere, er bedre å måle med en mikrometer, siden tykkelsen lett kan bryte gjennom den.

Det er enklest å bestemme kabeldiameteren med diameter ved hjelp av tabellen under.

Tabell av korrespondanse av tråddiameteren til tråddelen

Segmentkabelseksjon

Kabelprodukter med et tverrsnitt på opptil 10 mm2 er nesten alltid gjort runde. Det er ganske nok slike ledere for å sikre husholdningens behov for hus og leiligheter. Imidlertid, med større kabel-tverrsnitt kan inngangsledere fra et eksternt elektrisk nettverk utføres i en segment (sektor) form, og det vil være ganske vanskelig å bestemme trådtverrsnittet med diameter.

I slike tilfeller er det nødvendig å ty til et bord hvor kabelenes størrelse (høyde, bredde) tar tilsvarende verdi av tverrsnittsarealet. I utgangspunktet er det nødvendig å måle høyden og bredden på det nødvendige segmentet med en linjal, hvorpå den nødvendige parameter kan beregnes ved å korrelere de oppnådde dataene.

Tabellen over beregning av arealet av sektoren kabel ledninger

Avhengigheten av nåværende, kraft og tverrsnitt av kjernene

Mål og beregne kabeldiameterområdet for kjernediameteren er ikke nok. Før ledninger eller andre typer elektriske nettverk, er det også nødvendig å kjenne gjennomføringen av kabelprodukter.

Når du velger en kabel, må du styres av flere kriterier:

  • strøm av elektrisk strøm som kabelen vil passere;
  • strømforbruket av energikilder;
  • gjeldende belastning som utøves på kabelen.

makt

Den viktigste parameteren i elektrisk arbeid (spesielt legging av kabler) er gjennomstrømning. Den maksimale effekten som overføres, avhenger av lederens tverrsnitt. Derfor er det ekstremt viktig å vite den totale kraften i kildene til energiforbruk som skal kobles til ledningen.

Vanligvis viser produsenter av husholdningsapparater, apparater og andre elektriske produkter på etiketten og i dokumentasjonen som er vedlagt dem maksimum og gjennomsnittlig strømforbruk. For eksempel kan en vaskemaskin forbruke elektrisitet i området tiotallet W / h under skyllemodus til 2,7 kW / t når vannet oppvarmes. Følgelig bør den være koblet til ledningen med tverrsnittet, som er nok for overføring av elektrisitet med maksimal effekt. Hvis to eller flere forbrukere er koblet til kabelen, bestemmes total effekt ved å legge til grenseverdiene for hver av dem.

Den gjennomsnittlige effekten av alle elektriske apparater og belysningsapparater i en leilighet går sjelden over 7500 W for et enfaset nettverk. Følgelig må kabelseksjonene i ledningen velges under denne verdien.

Merk. Det anbefales å rundt tverrsnittet i retning av økende kraft på grunn av en mulig økning i strømforbruket i fremtiden. Ta vanligvis det neste ved antall tverrsnitt av den beregnede verdien.

For den totale effekten på 7,5 kW er det derfor nødvendig å bruke et kobberkabel med et tverrsnitt på 4 mm2, som kan gå glipp av om lag 8,3 kW. Tverrsnittet av lederen med en aluminiumkjerne må i så fall være minst 6 mm2, som overfører strømmen til en strøm på 7,9 kW.

I enkelte boligbygg er det ofte brukt et trefaset strømforsyningssystem på 380 V. Imidlertid er det meste av utstyret ikke konstruert for slik elektrisk spenning. En spenning på 220 V er opprettet ved å koble dem til nettverket via en nullkabel med en jevn fordeling av gjeldende belastning på alle faser.

Elektrisk strøm

Ofte er kraften til elektrisk utstyr og teknologi kanskje ikke kjent for eieren på grunn av mangel på denne egenskapen i dokumentasjonen eller helt tapte dokumenter og etiketter. Det er bare en vei ut i en slik situasjon - å beregne formelen selv.

Kraft bestemmes av formelen:

  • P er effekten målt i watt (W);
  • Jeg er kraften til den elektriske strømmen, målt i ampere (A);
  • U er den påførte spenningen målt i volt (V).

Når strømmen til en elektrisk strøm er ukjent, kan den måles med instrumentering: et ammeter, et multimeter og en klemmemåler.

Etter å ha bestemt strømforbruket og styrken til den elektriske strømmen, er det mulig å finne ut det nødvendige kabeltverrsnittet ved hjelp av tabellen nedenfor.

last

Beregningen av tverrsnittet av kabelprodukter for gjeldende belastning må gjøres for å beskytte dem ytterligere mot overoppheting. Når for mye elektrisk strøm passerer gjennom ledere for deres tverrsnitt, kan ødeleggelse og smelting av det isolerende laget forekomme.

Den maksimale tillatte kontinuerlige strømbelastningen er den kvantitative verdien av den elektriske strømmen som en kabel kan passere lenge uten overoppheting. For å bestemme denne indikatoren er det i utgangspunktet nødvendig å oppsummere kapasiteten til alle energiforbrukerne. Deretter beregner du belastningen med formlene:

  1. I = PΣ * Ki / U (enfaset nettverk),
  2. I = PΣ * Ki og ((√3 * U) (trefaset nettverk) hvor:
  • PΣ - total strøm av forbrukere av energi;
  • Ki-koeffisient lik 0,75;
  • U - spenning i nettverket.

Korrespondanse av tverrsnittsarealet av kobberkjerner av lederprodukter til strøm og strøm *

Beregning av tråddiameter diameter

Den viktigste og mest vanlige måten å overføre strøm til forbrukeren er en elektrisk ledning og elektrisk kabel. Elektrisk ledning og elektrisk kabel er et elektrisk produkt som består av en metallleder eller flere ledere. Hver kjerne er elektrisk isolert. Alle isolerte ledere av en ledning eller elektrisk kabel er plassert i vanlig isolasjon.

For tiden produserer industrien et bredt spekter av elektriske ledninger og elektriske kabler. Kabler og ledninger er hovedsakelig kobber og aluminium, dvs. sammensetningen av kjernen av kabelen eller ledningen er kobber eller aluminium.

Elektriske kabler og ledninger er enkeltkjerne og strandet. Kjernen til en kabel eller en ledning kan enten være enkeltrådig (monolitisk) eller flertrådig. Kjernene er fremstilt hovedsakelig av rund form, men ofte med store tverrsnitt elektriske kabler, kan formen på en multivire kjerne gjøres i form av en trekant. I dag skal vi studere hvordan å beregne ledningstverrsnittet etter diameter.

Merking av elektrisk kabel (wire)

Det er et standard antall deler av ledninger og elektriske kabler som påføres. Dette er 1mm 2; 1,5 mm 2; 2,5 mm 2; 4mm 2; 6mm 2; 8mm 2; 10 mm 2 etc. Typen, delen og antall kjerner er angitt enten på etiketten som følger med kabelen eller ledningen, eller på selve produktet. For eksempel brukes merking ofte på den samlede isolasjonen av kabelen og ledningen. Også de tekniske dataene for elektriske ledere er angitt i passet til produktet.

For eksempel tilgjengelig kabel VVGng 3x2.5. Denne merkingen tolkes ganske enkelt: kobberkabelen med PVC-isolasjon, PVC-kappe, ikke brennbar, antall kjerner er tre, tverrsnittet av hver kjerne er 2,5 mm 2. Hvis i begynnelsen av merkingen blir bokstaven "A", dvs. Kabeltypen vil være AVVG, det betyr at ledere av kabelen er aluminium.

Ved å markere ledningen kan du også finne ut ikke bare typen av ledningen selv, men også antall og tverrsnitt av ledende ledninger. For eksempel, wire PVA 3x1.5. Tolkningen er som følger: ledning med PVC-isolasjon og PVC-belegg, kobling. Antall vener er også tre, og tverrsnittet av hver kjerne er 1,5 mm 2.

Ledertverrsnitt

Hver ledning og kabelkjerne har sin egen del. Det kan være ganske lite (1mm 2 eller mindre) eller veldig stort (95mm 2 eller mer). Tverrsnittet av lederen påvirker evnen til å tåle lenge og i kort tid en elektrisk strøm av en viss størrelse. Jo større tverrsnittet av kjernen er, jo mer gjeldende er det i stand til å tåle i nesten ubegrenset tid.

Feil valgt del under konstruksjon kan føre til at lederen overopphetes, ødelegger isolasjonen under en stor oppvarming, noe som medfører at kortslutning kan oppstå, og det kan føre til brann og brann.

Seksjonsfeil

Det er ikke alltid årsaken til overoppheting av kabelen eller ledningen under drift kan være feil beregning av tverrsnittet. Som ofte skjer i praksis, er årsaken veldig enkel. Ikke alle produsenter av kabelprodukter har god tro på kvaliteten på produktene sine. Faktum er at så ofte er tverrsnittet av kabler og ledninger produsert faktisk undervurdert, dvs. stemmer ikke overens med den deklarerte verdien.

For å unngå å kjøpe en elektrisk kabel eller ledning med lavt tverrsnitt, må du først visuelt evaluere dens faktiske tverrsnitt. Nesten enhver ekspert innen elektriker er i stand til å "av øye" bestemme lederens tverrsnitt. Men når dette ikke er nok, kan profesjonelle selvstendig beregne tverrsnittsarealet til den elektriske lederen. Beregning av delen er laget i henhold til vanlig matematisk formel:

S = π * D 2/4 - formel №1

S = π * R2 - formel 2

hvor: π er en matematisk konstant, som alltid er omtrent 3,14;

R er radius av ledningen;

D er diameteren av ledningen.

Radien er halve diameteren:

R = D / 2 - formel nummer 3

Beregning av den elektriske lederens egentlige tverrsnitt

Å vite formelen for å beregne lederens tverrsnitt, kan du beregne sin faktiske verdi og finne ut hvor lav eller for høy (noe som er sjelden) produsenten oppgav verdien av tverrsnittet.

Enkeltråd (monolitisk kjerne)

For å selvstendig beregne tverrsnittet av ledertråd eller kabel, trenger du en tykkelse og muligens en kalkulator.

Først må du fjerne isolasjonslaget fra kjernen eller den elektriske ledningskjerne for å utsette kjernen selv. Deretter måles tykkerdiameteren med en tykkelse. fordi bodde monolitisk, da vil det bare være en. Etter måling av kjernens diameter er det nødvendig å erstatte verdien av diameteren (radius) i en av de ovennevnte formler.

Eksempel №1

Anta at den deklarerte tverrsnittet av en leder er 2,5 mm 2 på en ledning eller ledning. Ved måling av lederens diameter var lik 1,7 mm. Ved å erstatte verdien i formelen №1 får vi:

S = 3,14 * 1,7 2/4 = 2,26865 ≈ 2,3 mm 2

Beregning med formel nr. 1 viste at korsets tverrsnitt fra standardverdien undervurderes med 0,2 mm2.

La oss nå beregne den faktiske verdien av tverrsnittet i henhold til formelen nr. 2, men først bestemmer vi radiusen med formelen nr. 3:

Erstatt verdien av radiusen i formel nr. 2, og vi får:

S = 3,14 * 0,85 2 = 2,26865 ≈ 2,3 mm

Beregningen ved den andre formelen viste seg å ligne beregningen av den første. dvs. Kabeltverrsnittet viste seg å være undervurdert med 0,2 mm 2.

Eksempel 2

For eksempel viste diameteren av kjernen når den ble målt med en tykkelse 1,8 mm. Ved å erstatte denne verdien med formel nr. 1 får vi:

S = 3,14 * 1,8 2/4 = 2,5434 ≈ 2,5 mm 2

dvs. selve tverrsnittet var 2,5 mm 2, som i prinsippet tilsvarer standardverdien.

Stranded wire

Hvis du bestemmer tverrsnittet av en multivirekjerne, kan du ikke måle diameteren ved hjelp av den monolitiske kjernemetoden, siden beregningen vil være med stor feil. For å bestemme tverrsnittet av en multivirekjerne, er det nødvendig å måle diameteren til hver enkelt ledning i kjernen.

Hvis den totale tverrsnittet av kjernen er stor nok, så måles hver ledning, det er ganske mulig, fordi diameteren måler virkelig med en tykkelse. Men hvis en kjerne med flere ledninger har et lite tverrsnitt, er det svært vanskelig å bestemme diameteren til hver ledning på grunn av leddens finhet.

ABC reparasjon

Bygg et hus uavhengig av fundamentet til taket

Slik beregner du kabeltverrsnittet slik at det ikke overopphetes

Før du kobler lasten til nettverket, er det viktig å sikre at strømkabelkjernene er tilstrekkelig tykke. I tilfelle et betydelig overskudd av tillatt kraft, kan isolasjonen og til og med selve kjernen bli ødelagt på grunn av overoppheting.

Beregning av kabelavsnitt for strøm og strømstyrke

Før du beregner kabeltverrsnittet for strøm, er det nødvendig å beregne summen av strømmen til de tilkoblede elektriske apparatene. I de fleste moderne leiligheter er de viktigste forbrukerne:

  • Kjøleskap 300 W
  • Vaskemaskin 2650 W
  • Datamaskin 550 W
  • Belysning 500 W
  • Vannkoker 1150 W
  • 700 W mikrobølgeovn
  • TV 160W
  • 1950 W vannvarmer
  • 600 W støvsuger
  • Jern 1750 W
  • Totalt 10310 W = 10,3 kW

Samlet bruker de fleste moderne leiligheter omtrent 10 kW. Avhengig av tidspunktet på dagen, kan denne parameteren synke betydelig. Men når du velger et ledertverrsnitt, er det viktig å fokusere på en stor mengde.

Du må vite følgende: Beregningen av kabletversnittet for enfasede og trefasede nettverk er forskjellig. Men faktisk, og i et annet tilfelle, først og fremst, bør tre parametre tas i betraktning:

  • Nåværende styrke (I),
  • Spenning (U)
  • Strømforbruk (P).

Det er også flere andre variabler, deres verdi er forskjellig for hvert tilfelle.

Beregning av ledningstverrsnitt for enkeltfaset nettverk

Beregning av ledningstverrsnitt for effekt utføres ved å bruke følgende formel:

  • Jeg - nåværende styrke;
  • P er det totale strømforbruket til alle elektriske apparater;
  • Kog - samtidighetskoeffisienten, vanligvis er standardverdien på 0,75 tatt for beregninger;
  • U-fasespenning, den er 220 (V), men kan variere fra 210 til 240 (V);
  • Cos (φ) - for enfasede husholdningsapparater er denne verdien uendret og tilsvarer 1.

Hvis du raskt må beregne strømmen, kan du utelate verdien av cos (φ) og til og med Kog. Den resulterende verdien vil variere på nedre side (15%) ved bruk av formelen av denne typen:

Etter å ha funnet strømmen i henhold til den beregnede formelen, kan du trygt gå videre til valg av strømkabel. Nærmere bestemt, dens tverrsnittsareal. Det er spesielle tabeller der data presenteres som gjør at du kan sammenligne størrelsen på strøm, strømforbruk og kabelavsnitt.

Dataene varierer sterkt for ledere laget av forskjellige metaller. I dag brukes leilighetsnettverk vanligvis bare hardt kobberkabel, Aluminium er nesten aldri brukt. Selv i mange gamle hus er alle linjene lagt med aluminium.

Seksjonen av kobberkabelen er valgt i henhold til følgende parametere:

Beregningen av ledningen i leiligheten - Tabell

Det skjer ofte at, som følge av beregningene, oppnås en strøm mellom de to verdiene som presenteres i tabellen. I så fall bruker du nærmeste høyere verdi. Hvis, som følge av beregningene, verdien av strømmen i en ledertråd er 25 (A), er det nødvendig å velge et tverrsnitt på 2,5 mm 2 og mer.

Beregning av kabeltverrsnittet for et trefaset nettverk

For å beregne tverrsnittet av strømkabelen som brukes i et trefaset nettverk, er det nødvendig å bruke følgende formel:

  • I - Nåværende styrke, som vil velge kabel-tverrsnittsarealet;
  • U-fasespenning, 220 (V);
  • Cos φ er fasevinkelen;
  • P er et mål for total effekt av alle elektriske apparater.

Cos φ i denne formelen er veldig viktig. Siden det direkte påvirker styrken til strømmen. For annet utstyr er det annerledes, oftest med denne parameteren finnes i den tekniske ledsagende dokumentasjonen, eller det er angitt på saken.

Den totale forbrukernes forbruk er veldig enkel: alle kapasiteter er lagt opp, den resulterende verdien brukes til beregninger.

Et karakteristisk trekk ved valget av kabel-tverrsnittsareal for bruk i et trefaset nettverk er at en tynnere kjerne tåler større belastning. Den nødvendige delen i henhold til standardtabellen er valgt.

Valg av kabelavsnitt for trefaset nettverk - Tabell

Beregning av ledningstverrsnitt for kraft i et trefaset nettverk utføres med en slik verdi som √3. Denne verdien er nødvendig for å forenkle utseendet av formelen.

Dermed kan du om nødvendig erstatte produktet av rot- og fasespenningen for spenning lineær. Denne verdien er 380 (V) (Ulineær = 380 V).

Når du velger en kabelavdeling, både for et trefaset nettverk og for enfaset en, er det nødvendig å ta hensyn til den tillatte kontinuerlige strømmen. Denne parameteren angir strømstyrken (målt i ampere) som lederen kan tåle i ubegrenset tid. Det er bestemt av spesielle tabeller, de er tilgjengelige i EMP. For aluminium- og kobberledere varierer dataene betydelig.

Tillatbar nåværende varighet - Tabell

Når verdiene som er angitt i tabellen overskrides, begynner lederen å varme opp. Oppvarmingstemperaturen er omvendt proporsjonal med strømstyrken.

Husk å lese materialet om hvordan du skal koble ledningene riktig.

Forvrengning av ledningene forblir fortiden, les og lær om moderne metoder for tilkobling av ledninger

Temperaturen i et bestemt område kan øke ikke bare på grunn av en feil valgt seksjon, men også på grunn av dårlig kontakt. For eksempel, i stedet for å vri på ledningene. Ofte skjer dette som følge av direkte kontakt med aluminiumkabler og kobber. Overflaten av metaller blir oksidert, dekket med en oksidfilm, noe som signifikant svekker kontakten. På dette stedet varmes kabelen opp.

Record Navigasjon

Legg til en kommentar Avbryt svar

Dette nettstedet bruker Akismet for å bekjempe spam. Finn ut hvordan dine kommentardata behandles.

Til slutt, i det minste satt noen ut til å bli om tverrsnittet og styrken til dagens. Jeg vet hvor mange, bare tilby å kjøpe, uten å gå inn i tekniske detaljer og forholdet mellom strøm og tykkelse på isolatoren.

Til slutt, i det minste satt noen ut til å bli om tverrsnittet og styrken til dagens. Jeg vet hvor mange, bare tilby å kjøpe, uten å gå inn i tekniske detaljer og forholdet mellom strøm og tykkelse på isolatoren.